Ogólnie o myjniach

norurki) energii cieplnej (np. silnik parowy, silnik Diesla, turbina parowa, gazowa i silnik Stirlinga) energii elektrycznej (np. silnik elektryczny) energii kinetycznej (np. turbina wiatrowa, turbina wodna) en

Ogólnie o myjniach

Definicja silnika

Silnik ? typ maszyny zamieniającej energię na pracę mechaniczną.

Energia zasilająca silnik może mieć formę:

energii chemicznej (np. silnik dla nanorurki)
energii cieplnej (np. silnik parowy, silnik Diesla, turbina parowa, gazowa i silnik Stirlinga)
energii elektrycznej (np. silnik elektryczny)
energii kinetycznej (np. turbina wiatrowa, turbina wodna)
energii potencjalnej (np. turbina wodna).

W zdecydowanej większości urządzeń energia mechaniczna wytwarzana przez silnik odbierana jest od obracającego się wału silnika i jest wykorzystywana w postaci pracy mechanicznej lub zamieniana na energię elektryczną. W silnikach takich jak np. silnik rakietowy lub silnik liniowy efektem działania silnika jest energia ruchu postępowego.

Najważniejsze atrybuty silnika

moc ? zdolność do wykonania pracy w jednostce czasu
sprawność ? stosunek wytworzonej energii użytecznej do energii pobranej przez silnik
moment obrotowy ? dla wszystkich silników z ruchem obrotowym
siła ciągu ? szczególnie dla silników lotniczych
impuls właściwy ? dla silników rakietowych


Źródło:


Podstawy termodynamiczne działania silnika diesla

Obiegiem porównawczym współczesnych silników wysokoprężnych jest obieg Seiligera-Sabathé. Obieg ten składa się z następujących przemian charakterystycznych:

adiabatyczne sprężanie,
izochoryczne podgrzewanie czynnika,
izobaryczne podgrzewanie czynnika,
adiabatyczne rozprężanie,
izochoryczne oziębianie czynnika.

Obieg porównawczy jest obiegiem teoretycznym. Silnik rzeczywisty pracuje wg obiegu, składającego się z nieco innych przemian. Sprężanie i rozprężanie nie są adiabatyczne, ponieważ występuje wymiana cieplna ze ściankami cylindra, głowicą, tłokiem i innymi elementami. Nawet, gdyby występujące procesy były adiabatyczne, nie byłyby odwracalne. Ogrzewanie czynnika nie jest izobaryczne, następuje najpierw wzrost ciśnienia, a potem jego spadek. Najważniejszą różnicą jest to, że obieg porównawczy opisuje układ zamknięty (wykorzystywany jest wciąż ten sam czynnik), a obieg rzeczywisty układ otwarty (następuje wymiana czynnika roboczego).

Źródło: https://pl.wikipedia.org/wiki/Silnik_o_zap%C5%82onie_samoczynnym


Jak działa turbosprężarka?

Turbosprężarka popularnie nazywana turbiną to maszyna wirnikowa, która składa się z turbiny i sprężarki. Turbina i sprężarka w tej maszynie osadzone są na jednym wale. Turbosprężarka służy do doładowania silnika spalinowego lub kotła spalinowego. Turbina znajdująca się w turbosprężarce zasilana jest spalinami z silnika spalinowego, sprężarka natomiast zasila silnika sprężonym powietrzem. Do cylindra trafia duża ilość powietrza, co daje większą moc silnika. Obroty sprężarki zależą od ilości gazów dostarczanych do niej. Nowoczesne turbosprężarki mają mniejszy moment bezwładności niż turbosprężarki starszego typu. Zastosowanie turbosprężarki w silniku powoduje wzrost sprawności silnika, wzrost wysilenia, co sprawia, ze silniki mogą być mniejsze i lżejsze, lepszą charakterystykę silnika, lepsze opłukanie cylindra ze spalin, brak wyczuwalnego spadku mocy. Wadą turbosprężarek jest wzrost temperatury czynnika roboczego. Aby uniknąć przegrzania części i schodzić ją stosuje się chłodnice w układzie doładowania.



© 2019 http://imprezydlafirm.wroclaw.pl/